
Chipmunk: Investigating Crash-Consistency in
Persistent-Memory File Systems

Hayley LeBlanc
University of Texas at Austin

Shankara Pailoor
University of Texas at Austin

Om Saran K R E
University of Texas at Austin

Isil Dillig
University of Texas at Austin

James Bornholt
University of Texas at Austin

Vijay Chidambaram
University of Texas at Austin and

VMware Research

Abstract
We present Chipmunk, a new framework to test persistent-
memory (PM) file systems for crash-consistency bugs. Using
Chipmunk, we discovered 23 new bugs across five PM file
systems; most bugs have been confirmed and fixed by de-
velopers. The discovered bugs have serious consequences,
including making the file system un-mountable or break-
ing rename atomicity. We present a detailed study of the
bugs found using Chipmunk and discuss important lessons
learned for designing and testing PM file systems.

CCS Concepts: • Software and its engineering → File
systemsmanagement; •General and reference→Relia-
bility; • Information systems → Storage class memory.

Keywords: Crash consistency, file systems, persistent mem-
ory, testing, bugs
ACM Reference Format:
Hayley LeBlanc, Shankara Pailoor, Om Saran K R E, Isil Dillig,
James Bornholt, and Vijay Chidambaram. 2023. Chipmunk: Investi-
gating Crash-Consistency in Persistent-Memory File Systems. In
Eighteenth European Conference on Computer Systems (EuroSys ’23),
May 8–12, 2023, Rome, Italy. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3552326.3567498

1 Introduction
Persistent memory (PM) is a new storage-class memory tech-
nology that offers extremely low-latency persistent storage
and fine-grained access to storage over thememory bus [1, 2].
PM has been a focus of research over the past two decades [3–
5], and more recently has been commercialized by Intel [6].
This work has led to the development of variety of user space

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’23, May 8–12, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9487-1/23/05. . . $15.00
https://doi.org/10.1145/3552326.3567498

applications, libraries, and tools for PM [3, 4, 7–16]. A num-
ber of file systems [3, 16–23] have also been developed that
exploit PM’s unique properties.

One of the main responsibilities of a file system is to keep
the user’s data safe in the event of a crash due to power loss
or a kernel bug. To do so, the file system should be crash con-
sistent: it should recover after a failure to a consistent state
without losing data the user expected to be persistent [24–
27]. The crash-consistency specifications of disk-based file
systems are based on the use of fsync and related system
calls that flush the volatile page cache to persistent storage.
If a file has not been explicitly flushed, its expected state after
a crash is not defined. Several tools [28–30] are designed to
test disk-based file systems for crash-consistency bugs, but
all rely on the inclusion of fsync or related calls to establish
crash-consistency guarantees.
Work on PM file systems has produced a diverse set of

systems with new crash-consistency specifications and archi-
tectures, including in-kernel [17, 18, 20, 31], kernel-bypass
[21–23], and hybrid systems [19]. A key defining trait of
these systems is that most updates to persistent data bypass
the page cache and write directly to underlying storage me-
dia. Also, unlike disk-based Linux file systems, which use a
common kernel block layer to issue writes, these systems
access PM directly using memory loads and stores. Most PM
file systems take advantage of the media’s low latency to
guarantee atomic, synchronous operations without requiring
fsync. The modified storage stack and strengthened crash-
consistency guarantees makes existing file-system testing
tools incompatible with PM file systems.
This paper makes two contributions. First, it presents

Chipmunk, a framework for testing the crash consistency
of any PM file system that implements the POSIX interface.
Given a workload and a target file system, Chipmunk simu-
lates crashes at points in the workload where some data is
expected to be persistent. It then mounts the file system on
resulting crash states and checks if it recovers correctly. The
crash-consistency guarantees provided by various PM file
systems are encoded into Chipmunk’s consistency checker,
enabling it to detect both low-level PM programming errors
and high-level logic bugs that impact crash consistency. We
couple Chipmunk with ACE [28], a tool that systematically
generates small workloads, and Syzkaller [32], a gray-box

https://doi.org/10.1145/3552326.3567498
https://doi.org/10.1145/3552326.3567498

EuroSys ’23, May 8–12, 2023, Rome, Italy LeBlanc et al.

fuzzer. The test programs generated by these tools enable
Chipmunk to be used for lightweight checks during devel-
opment as well as for more thorough, long-running testing.
Second, this paper presents an analysis of 23 bugs found

by Chipmunk across five PM file systems. We have reported
all bugs upstream; all except those found in PMFS (which is
not actively maintained) have been acknowledged, and 16
have been fixed. The bugs have severe consequences such
as breaking the atomicity of the rename system call, which
many applications depend on for atomic updates. To the best
of our knowledge, this is the largest published corpus of PM
file-system crash-consistency bugs. We analyze these bugs
to distill useful insights for both PM file-system design and
efficient crash-consistency testing of PM file systems. For
example, many bugs are logic or design issues in performance
optimizations rather than the missing flush/fence bugs that
PM bug-finding tools target [33–40].
Challenges with testing PM file systems. Current ap-
proaches for testing file-system crash consistency do not
work on PM file systems for two reasons. The first challenge
is intercepting writes to the storage media. Past work on
testing disk-based systems takes a black-box approach by
recording writes as they go through the kernel block layer
[28, 29]. However, PM file systems write directly to media
using processor store instructions. A black-box approach
to intercepting these writes would require instrumenting
and recording all individual memory stores to PM, which is
prohibitively expensive.

Second, priorwork injects crashes only after fsync-related
system calls, as these are the only points at which the file sys-
tem makes consistency guarantees. However, many PM file
systems perform updates to durable storage synchronously
and do not mandate fsync for consistency. In these systems,
the effect of each system call becomes persistent by the time
that system call returns. Furthermore, prior tools made a
conscious decision to only inject crashes after a system call
completes; they do not test what happens when you crash
in the middle of a system call. While this decision helps fo-
cus testing on mature file systems, injecting crashes in the
middle of system calls is crucial for new and complex PM
file systems. The increased number of crash points, together
with the fine granularity of PM I/O, threatens to make testing
intractable.

These challenges are demonstrated by Yat [41], a hypervisor-
based brute-force testing tool for Intel’s PMFS file system [18].
Yat records individual memory stores and has limited opti-
mizations to focus on interesting crash states. Its authors
report that it would take over 5 years to fully check one of
their three test workloads.
Chipmunk. Chipmunk tackles these challenges by exploit-
ing insights about the way that PM file systems are built to
intercept writes and implement a new testing strategy that
targets interesting crash states without exhaustively testing

all of them. In contrast to existing black-box approaches
to checking traditional file systems, our approach is based
on gray-box function-level interception to efficiently record
PM I/O and to facilitate reasoning about which crash states
are interesting to check. We observe that PM file systems
use centralized persistence functions to perform writes to
PM whenever data must become durable. Chipmunk uses
Kprobes [42] and Uprobes [43] to intercept these functions
and record I/O without modifying the file system. Intercept-
ing writes at the function level rather than the instruction
level greatly reduces overhead by reducing the total number
of writes that are intercepted individually. This gray-box
instrumentation uses minimal information about the source
code to making logging feasible and efficient.

To choose which crash states to test in systemswith strong
crash-consistency guarantees, we build on this higher-level
interception as well as empirical results about the write pat-
terns of PM file systems. Intercepting at the function level
allows us to see an entire file-system-level write at once, and
so we can coalesce individual stores when appropriate. For
example, a 1KB write to a file causes 128 8-byte writes (the
unit of write atomicity on Intel PM), which would result in
2128 crash states to test. Even if we combine these writes into
cache lines, there are still thousands of crash states to check.
However, checking all of these states is unlikely to expose
more bugs than just checking a few. We also observe that
the set of in-flight writes (writes in volatile caches that have
not yet become persistent) at any point in metadata-related
system calls is typically small, reducing the number of crash
states that Chipmunk must explore.
Generating workloads. Given a workload, Chipmunk pro-
vides a mechanism to generate and test crash states. An
orthogonal question is deciding which workloads to explore.
CrashMonkey [28] hypothesized that systematically explor-
ing small workloads on small file system states was effective
in finding crash-consistency bugs; we sought to test this
hypothesis for PM file systems. We modify the Automatic
Crash Explorer (ACE) workload generator used by Crash-
Monkey for use with synchronous PM file systems. To try
to invalidate this hypothesis, we also use the Syzkaller [32]
gray-box kernel fuzzer to generate more complex workloads.
Results.Weuse Chipmunk to test seven open-source PMfile
systems. This set includes two disk-based systems ported to
PM, four in-kernel systems built for PM, and one hybrid file
system with both user and kernel components. Chipmunk
finds 23 unique bugs across five of the systems. From these
results, we draw some common observations about how PM
file systems work and how to test them, including:

• While a number of recent tools focus on finding miss-
ing or duplicate cache flushes and fences in PM appli-
cations [33–40], we found that a majority of the bugs
(19/23) resulted from logic errors, such as a metadata
item being left out of a transaction.

Chipmunk: Investigating Crash-Consistency in Persistent-Memory File Systems EuroSys ’23, May 8–12, 2023, Rome, Italy

• PM file systems increase performance by maintaining
some data structures in volatile DRAM and rebuilding
them when the file system is remounted [17, 19, 20];
Chipmunk found seven bugs in such code.

• Six bugs arose from developers trying to increase per-
formance by updating metadata in-place, which is
much easier to do with the fine-grained access model
of PM, instead of inside a transaction.

Our analysis of these bugs contain several other obser-
vations along with a discussion of their implications. To
the best of our knowledge, this is the first such analysis of
crash-consistency bugs in PM file systems.

In summary, this paper makes the following contributions:

• A set of widely-applicable tools to test crash-consistency
of PM file systems (§3);

• A corpus of 23 crash-consistency bugs discovered by
these tools across five PM file systems (§5);

• An analysis of discovered crash-consistency bugs, with
insights for PMfile-system design and crash-consistency
testing (§5).

Chipmunk is publicly available at https://github.com/utsaslab/

chipmunk.

2 Background and Motivation
This section first describes file-system crash consistency.
It then discusses why crash consistency is important, why
testing it for PM file systems is challenging, and why existing
tools do not solve this problem.
Crash consistency. A file system is crash consistent if it
maintains a set of guarantees about its data and metadata
after a crash due to a power loss or a kernel bug [24–26]. For
example, if there is a crash in the middle of a rename system
call, the POSIX standard requires that the file system after
recovery should have the file in either the old name or the
new name; in other words, rename must be atomic even if
there is a crash [44].
Many applications depend on the file system to be crash

consistent [45]. Continuing with the rename example, many
applications including text editors such as emacs and vim use
temporary files to store user data, and rename the temporary
files over the original files when the user saves the file. If
rename is not atomic, these applications can lose user data in
a crash. Unexpected power loss occurs even in professionally-
managed data centers [46–51]. Thus, it is important to ensure
that file systems are crash consistent.
Persistent memory (PM). Persistent memory technology,
recently commercialized as Intel Optane DC Persistent Mem-
ory [6, 52], combines the properties of traditional storage
media and DRAM: it is byte-addressable and connected to
the memory bus like DRAM, but provides persistence like
traditional storage media.

In the x86 programming model, PM is accessed via proces-
sor load and store instructions. Writes to PM flow through
the CPU cache hierarchy like any other memory store, and so
do not become immediately persistent. Data can be flushed
from CPU caches to persistent media with cache line flush
instructions (clfush, clflushopt, clwb), or can bypass the
caches entirely with non-temporal stores (movnt). Because
writes to PM are processor stores, they are also subject to
CPU store reordering, and so must be surrounded by store
fences when preserving order is important for consistency.
We say that data whose cache line has been written back,
or which was written using non-temporal stores, is flushed
to PM once a subsequent store fence instruction has exe-
cuted, as it is guaranteed to reach media before any future
writes. We term a write that has not yet been flushed to per-
sistent media an in-flight write; in-flight writes may be lost
in the event of a crash. If there are multiple in-flight writes
to different addresses, they may become persistent in any
order.
PM file systems. Research on PM file systems has produced
a variety of new systems that take advantage of PM’s unique
characteristics. PMFS [18], NOVA [17], NOVA-Fortis [31],
and WineFS [20] are implemented in the kernel. Strata [21],
Assise [23], and SplitFS [19] are implemented as kernel-
bypass systems. Strata and Assise are implemented entirely
in user space, while SplitFS handles file data in user space
and passes metadata operations to a kernel component. Sev-
eral systems (ext4-DAX and XFS-DAX [53]) are based on
existing disk-based file systems. These systems share much
of their code with their original implementations.

PM file systems differ from traditional file systems in sev-
eral key ways. First, traditional file systems write updates to
a volatile page cache in DRAM before flushing to disk. In con-
trast, PM file systems synchronously write some (if not all)
updates directly to storage media in order to take advantage
of the low latency and high bandwidth of PM. Second, while
traditional systems make use of a common kernel-level block
layer to issue writes to disk, PM file systems perform I/O
directly using memory loads and stores without an extra soft-
ware layer. Third, most PM file systems do not require use
of fsync-related system calls to ensure that data becomes
durable; the exception to this is ext4-DAX and XFS-DAX,
which retain the crash-consistency properties of ext4 and
XFS. We refer to systems that do not require fsync as having
strong crash-consistency guarantees, whereas ext4-DAX and
XFS-DAX have weak guarantees.
Why current tools are not enough. Existing work on
crash-consistency testing (§6) is insufficient for today’s PM
file systems for four reasons. First, prior work on testing
disk-based file systems cannot record writes to PM. Crash-
Monkey [28] and Hydra [29], two state-of-the-art tools for
testing traditional file systems, rely on the kernel block layer
to record disk I/O. Since PM file systems do not use the block

https://github.com/utsaslab/chipmunk
https://github.com/utsaslab/chipmunk

EuroSys ’23, May 8–12, 2023, Rome, Italy LeBlanc et al.

Figure 1. Architecture. Given a target file system and its
persistence functions, Chipmunk uses workloads from both
ACE and Syzkaller to test the file system. Chipmunk pro-
duces bug reports with enough detail to reproduce the bug.

layer, these tools are incapable of interceptingwrites made by
these systems. Second, these tools do not check all necessary
crash states. CrashMonkey and Hydra only insert crashes
after fsync-related system calls. Injecting crashes during
system calls is crucial for exposing bugs in the complex and
untested crash-consistency mechanisms of PM file systems.
Furthermore, the consistency checkers for these tools would
need to be rewritten to properly check these crash states.
Third, tools for testing PM file systems do not scale well.

Yat [41], PMTest [33], and Vinter [54] record individual PM
I/O instructions, resulting in a high number of instrumen-
tation points. Vinter uses PANDA [55] for dynamic binary
instrumentation, which introduces significant overhead. Yat
has limited support for state space reduction and brute-force
checks a large number of crash states.

Fourth, prior work on testing general PM applications can-
not test high-level crash-consistency properties of file sys-
tems. These tools focus on PM programming errors, like miss-
ing or unnecessary cache-line flushes and store fences [33–
37, 40]. Several tools [38, 39] can detect narrow classes of
logic bugs – for example, that certain fine-grained updates
are atomic – with hard-coded checks or developer-provided
oracles. We are interested in checking higher-level crash con-
sistency guarantees without requiring specifications from
developers, so these tools are not sufficient.

3 Chipmunk
We present Chipmunk, a new framework to find crash con-
sistency bugs in PM file systems. Chipmunk tackles the chal-
lenges outlined in §2 with function-level interception and
a new testing strategy tailored to PM file systems. Chip-
munk can test all PM file systems implementing POSIX, and
requires no modification of file system code. We have run
Chipmunk on file systems in both user and kernel space.

3.1 Overview
Chipmunk is a record-and-replay framework. It first runs a
given workload (a sequence of file-system operations) and

records the writes made by the file system. Workloads are
run sequentially, so there is only one system call running on
the file system at any given time. It then replays recorded
writes to create crash images, which represent the state of
the system if it had crashed at different points during the
workload. Chipmunk mounts the target file system on the
crash image, lets it recover, and then checks whether it has
recovered to a consistent state.

We use two tools to generate workloads for Chipmunk to
test. The ACE workload generator is based on a hypothesis
from the CrashMonkey work [28] that testing small work-
loads on a newly-created file system is effective at finding
crash-consistency bugs. To determine if this hypothesis holds
for PM file systems, we also use the Syzkaller [32] gray-box
fuzzer to generate long, complicated workloads.

We used Chipmunk to test seven file systems: six in-kernel
systems and one hybrid system with both user and ker-
nel components. To our knowledge, there are no publicly-
available user-space PM file systems that support recovery
from arbitrary crashes (§4.1).

3.2 Challenges
In order to effectively test PM file systems, Chipmunk must
overcome three key challenges: how to intercept writes, how
to deal with new crash-consistency semantics, and how to
deal with very large sets of crash states. We describe each
challenge and outline the empirical observations and design
decisions that allow Chipmunk to discover many bugs in
PM file systems.
Interceptingwrites. Prior work on testing file-system crash
consistency has taken a black-box approach to recording
writes to storage media. Yat [41] uses a modified hypervisor
that triggers a VM exit on stores, flushes, and fences to PM,
PMTest [33] uses the trackingmechanism provided byWHIS-
PER [15] to trace these instructions, and Vinter [54] uses
dynamic binary instrumentation in PANDA [55]. These ap-
proaches introduce overheads associated with the instrumen-
tation tools and a high number of instrumentation points.
CrashMonkey [28] and Hydra [29], two state-of-the-art

tools for testing crash-consistency in traditional file systems,
also use a black-box approach based on the Linux kernel’s
block layer. The file systems they target issue all writes to
storage via this layer, so it provides a natural interception
point. However, since PM file systems do not use this layer,
we cannot use this approach to log writes in Chipmunk.

Instead, Chipmunk uses gray-box function-level instru-
mentation to intercept writes to PM. Each PM file system we
examined uses a small set of centralized persistence functions
to perform I/O. These abstractions simplify reasoning about
PM semantics and potentially enable portability to new ar-
chitectures. All tested systems implement functions for some
subset of the following: non-temporal memcpy, non-temporal

Chipmunk: Investigating Crash-Consistency in Persistent-Memory File Systems EuroSys ’23, May 8–12, 2023, Rome, Italy

memset, flushing cache lines associated with a buffer, and is-
suing store fences. Each of these operations handles a single,
contiguous non-temporal store, a contiguous set of cache
line flushes, or enforces store ordering. Chipmunk is not
limited to recording just this set of functions; a system’s
logger can be written to handle other types of persistence
functions, if, for example, the system is designed for another
persistence model.
Chipmunk requires developers to provide the names of

centralized persistence functions functions; it then instru-
ments these functions at runtime using the Kprobes [42] and
Uprobes [43] debugging mechanisms in the Linux kernel.
This gray-box approach to recording writes has multiple ben-
efits. It makes logging feasible without requiring source code
modification, and it makes Chipmunk portable to new PM
architectures since the semantics of x86 PM primitives are
not built into the recording code. It also enables Chipmunk
to encode information about the context in which a write
was made and use it during consistency checking.
New crash-consistency semantics. In traditional file sys-
tems, if a user wants to ensure that a specific file or set of
files is persistent on disk, they must call an fsync-related
system call to flush updates from the volatile page cache to
the storage media. Since crash-consistency guarantees are
not well defined if the system crashes prior to such system
calls, and the journaling mechanisms that handle incomplete
updates are very mature, systems like CrashMonkey and
Hydra only insert crash points after fsync-related calls.
However, PM file systems with strong crash consistency

specs clearly define the correct state of each file at every
point during execution, not just after fsync. These systems
guarantee that most operations are both synchronous and
atomic. To test the novel, complex, and un-tested crash-
consistency mechanisms of PM file systems, Chipmunkmust
inject crashes during system calls (and not just after fsync).
We developed a new testing strategy and set of consistency
checks (§3.3) to handle these new crash points for systems
with strong guarantees. Chipmunk coalesces logically-related
non-temporal stores and flushes (e.g., those all associated
with the same file data write) and replays them in different
combinations to focus on interesting crash states. It uses an
oracle-based checker that compares the post-crash state of
each file to a set of possible legal states.
Increased number of crash states. PM file systems with
strong crash consistency make fine-grained writes to storage
media in the critical path of system calls. As a result, a work-
load can result in significantly more crash states that are
interesting to test than in systems with weaker guarantees.
Specifically, if the number of in-flight writes between each
store fence is too high, the number of possible crash states
to check will explode to an intractable number.

We studied five systems with strong guarantees and made
two observations that we use to overcome this challenge.

rename(old, new)

write: deleting old

write: tx begin

write: creating new

write: tx end

write: deleting old

write: tx begin

write: creating new

write: tx end

Crash State
with neither old or new

WORKLOAD

Sequence of writes

Creating a crash state
with only

first write applied

Bug Report: rename
not atomic

1

2

3

4

Figure 2. Chipmunk workflow. The figure shows how
crash consistency is tested using a rename() workload. In
this example, the old file being deleted is updated in-place,
while the new file creation happens inside a transaction. 1)
Chipmunk runs the workload and logs a sequence of PM
operations. For simplicity, the operation has been reduced
to a sequence of four logical writes. 2) Chipmunk creates a
crash state where only the old file is deleted; the other writes
are lost. 3) The consistency checker finds that both the old
and new files are missing. 4) Chipmunk creates a bug report.
Chipmunk discovered this bug in NOVA (bug 4).

First, when PM file systems perform metadata operations,
they issue a small number of small writes to PMwith frequent
store fences. We found that the average number of in-flight
writes for metadata operations is three and the maximum
is 10 in the tested systems. This means that at any given
crash point in metadata-related system calls, the number
of crash states is small enough to test exhaustively. Second,
although file data operations often involve many in-flight
writes with few store fences, checking every possible crash
state is unlikely to expose new bugs. We want to check how
the file system recovers when some file data is lost in a crash,
but it is unnecessary to check every possible state. Chipmunk
coalesces data associated with the same file data update into
a single write, and checks only a small subset of states with
missing data. Metadata about the size of buffers and how they
are written guides this heuristic; for example, non-temporal
memcpy on a large buffer usually indicates a file data write.

3.3 Chipmunk Architecture
Chipmunk is built on top of the CrashMonkey framework [28].
CrashMonkey consists of a set of user space utilities, a block
device wrapper kernel module that intercepts writes, and a
copy-on-write device to facilitate constructing file system
snapshots. We adapt CrashMonkey’s user space utilities to
target PM file systems and build new kernel modules based

EuroSys ’23, May 8–12, 2023, Rome, Italy LeBlanc et al.

on Kprobes and Uprobes, two Linux kernel debugging utili-
ties, to record writes to PM.
Given a workload and a target file system, Chipmunk

proceeds in four steps (Figure 2): (1) run the workload and
log the writes made by the file system; (2) construct crash
states; (3) check each crash state; and (4) generate a bug
report if required. We now describe these steps in detail.
Logging writes. Chipmunk uses two dynamic debugging
and tracing tools, Kprobes [42] (for in-kernel file system com-
ponents) and Uprobes [43] (for user space components), to
automatically instrument centralized persistence functions
at runtime. Our logging modules only require the name (for
kernel space components) or offset (for user space object
files) of these functions in order to instrument them. Kprobes
and Uprobes are used together in the same logging module
to test SplitFS.

Kprobes and Uprobes make a copy of a probed instruction
and replace the first byte(s) with a breakpoint instruction.
When the breakpoint is hit, control is passed to a handler
function. In Chipmunk’s loggers, these handlers record the
probed operation and its arguments. The destination of each
update is translated from a virtual to physical address within
the logging module to facilitate later replay. The user-space
test harness also inserts markers into this log to record the
start and end of each system call, which Chipmunk uses
to determine which writes to PM are associated with each
system call. This approach requires no code changes to the
file-system implementation other than to prevent the com-
piler from inlining the persistence functions. In our experi-
ence, identifying these functions was simple, and we expect
it to be even simpler for file-system developers since these
functions are used extremely frequently.
Constructing crash states. Given a workload and a file
system to test, Chipmunk selects crash points based on the
crash consistency guarantees of the file system and simulates
crashes at these points. For ext4-DAX and XFS-DAX, crash
points are placed after fsync, sync, and fdatasync calls. For
the other systems, crash points are injected after each store
fence invoked by the file system. A single system call may
perform multiple store fences, resulting in multiple crash
points per system call.We construct and create possible crash
states out of the in-flight writes that follow each store fence.
This process checks crash states that occur both during and
between system calls.
Chipmunk replays a workload by walking through the

log of flushes, non-temporal stores, and fences. When it en-
counters a cache line flush or non-temporal store, it adds
a structure containing the type, contents, and destination
address of the flush/store to an in-flight vector. When it en-
counters a store fence, it first constructs and checks crash
states based on the in-flight vector, then flushes the con-
tents of the vector to the replay device. Each crash state
is constructed by replaying a subset of the contents of the

in-flight vector on top of all updates that precede the most
recent store fence, which are guaranteed to be persistent.
We replay the updates in each subset in program order. For
𝑛 in-flight writes, there will be 2𝑛 − 1 crash states to check.
As noted in §3.2, we have observed that 𝑛 is small in prac-
tice for metadata-related calls, allowing Chipmunk to apply
this exhaustive testing strategy. File data writes do not ad-
here to this pattern but can be coalesced into a small set of
large writes. Since a small number of in-flight writes is not a
guarantee, Chipmunk can place a configurable cap on the
number of writes to replay. We find that in practice, even a
cap of two writes is sufficient to reveal many bugs (§5.1).
Testing crash states.To check file-system consistency, Chip-
munk first mounts the target file system on each crash state,
which is itself a useful consistency check. Once successfully
mounted, Chipmunk compares the file-system state against
an oracle representing valid post-crash state(s). The oracle
runs the original workload on a fresh file system instance in
parallel with log replay. When Chipmunk encounters the be-
ginning of a new system call in the log, it records the current
oracle state of file(s) that will be modified, then executes that
system call on the oracle file system. Files in a crash state are
compared against an oracle version of the file by checking
whether metadata provided by stat differs between the two
versions. For regular files, Chipmunk also compares the con-
tents of each version. For directories, Chipmunk compares
the directory entries of each version. Several crash states
may be compared to the same few oracle states, so Chip-
munk caches the metadata and contents for each oracle file
version in memory.

Most system calls in file systems with strong guarantees
are intended to be atomic. The main exception is write,
although many systems provide the option to make write
atomic. Further, all system calls are synchronous, in that
modifications to persistent data are made durable by the time
each system call completes. Chipmunk focuses on checking
these atomicity and synchrony properties.
When a crash is injected in the middle of a system call,

Chipmunk checks that the operation is atomic by comparing
modified files in the crash state to the current and previous
oracle versions. If the operation modifies multiple files, the
files must all match the same version. When a crash is in-
jected after a system call, Chipmunk checks that the system
call is synchronous by comparing the crash state against
the current oracle state. Chipmunk also confirms that files
that should be unmodified by the current system call match
the current oracle state in each crash state. These checks
validate properties implied by POSIX or widely expected
by users in practice [27, 45]. Finally, to validate that the file
system is in a usable state, Chipmunk creates files in all
directories, then deletes all files. If any of these checks or
operations fail, Chipmunk outputs a bug report describing
the inconsistency and the corresponding crash state.

Chipmunk: Investigating Crash-Consistency in Persistent-Memory File Systems EuroSys ’23, May 8–12, 2023, Rome, Italy

Because the consistency checks mutate the crash state, we
reuse our logging infrastructure to record an undo log for
these mutations and roll back the changes when advancing
to the next crash state.

3.4 Workload Generation
Given a workload, Chipmunk generates crash states and
tests them for consistency. An orthogonal challenge is gen-
erating workloads for Chipmunk to test. The CrashMonkey
work [28] introduced the hypothesis that small workloads
on new file systems are useful in finding crash-consistency
bugs. While this hypothesis was true on traditional file sys-
tems, we aim to test whether it holds on PM file systems.
To this end, we modify CrashMonkey’s Automated Crash
Explorer (ACE), which systematically explores workloads
of a given size, to work with Chipmunk. We also modify
the Syzkaller [32] gray-box fuzzer to work with Chipmunk.
Syzkaller generates long, complex, randomized workloads
while aiming to improve code coverage.

3.4.1 Automatic Crash Explorer. We used a modified
version of ACE [28] to systematically generate workloads.
ACE was designed to exhaustively generate workloads of a
pre-defined structure to test traditional file systems. Given
a sequence length 𝑛, ACE generates workloads with 𝑛 core
file-system operations over a small, predetermined set of
files, then satisfies dependencies by opening and closing files
and adds fsync, fdatasync, or sync operations. A workload
with 𝑛 core system calls is called a “seq-𝑛" workload.

We use a slightly modified version of ACE’s default mode,
which inserts at least one fsync-family operation in each
workload, for ext4-DAX and XFS-DAX. We also added a
mode that does not insert these calls for the other systems.

We test all seq-1 and seq-2 workloads, as well as the subset
of seq-3 workloads containing only pwrite, link, unlink,
and rename calls (i.e. “seq-3 metadata” workloads [28]) to
make testing tractable. For PM file systems with strong con-
sistency, we generate 56 seq-1 tests, 3136 seq-2 tests, and
50650 seq-3 metadata tests. The default mode generates 419
seq-1 tests and 432462 seq-2 tests; we did not run seq-3 meta-
data tests on ext4-DAX and XFS-DAX.

3.4.2 Syzkaller. We modify Syzkaller [32], a state-of-the-
art gray-box kernel fuzzer, to generate workloads for Chip-
munk. As is standard in gray-box fuzzing, our fuzzer starts
with an initial set of test cases (seeds) and uses genetic pro-
gramming to generate new tests for Chipmunk from those
seeds. As Chipmunk executes each workload, Syzkaller col-
lects code coverage information by recording coverage points
inserted by the compiler. If the workload covered new parts
of the kernel, the fuzzer adds it to its set of seeds and gener-
ates new workloads from it.
Syzkaller generates workloads by randomly selecting se-

quences of system calls and argument values. It generates

syntactically and semantically valid workloads by using a
detailed template for each system call that specifies more
precise qualified type information [56] for the call’s argu-
ments. For example, the template for write specifies that its
first argument is a valid file descriptor in use by the program,
rather than an arbitrary integer.
To adapt Syzkaller to our setting, we restrict it to only

generate workloads that contain file-system operations, and
replace its workload executor with a custom one. Our ex-
ecutor invokes Chipmunk on each workload and records
code coverage both before the crash and during recovery.
For PM file systems with strong consistency, we add crash
points between each system call and in the middle of the
final non-failing system call in the workload. For ext4-DAX
and XFS-DAX, we include fsync, sync, and fdatasync in
workloads and check crash states after each call to one of
these system calls. We add a sync at the end of each work-
load to make sure we check at least one crash state. Since
Syzkaller is a kernel fuzzer and we are primarily interested
in collecting coverage on SplitFS’s user space component,
we use GCC’s sanitizer coverage instrumentation to collect
code coverage [57] and modify Syzkaller to use this cover-
age information. This required adding some code to SplitFS
to log the basic blocks covered during fuzzing, but did not
require modification of any existing code. We do not collect
code coverage of SplitFS’s kernel component.
Like many fuzzers, Syzkaller can quickly generate many

bug reports that are duplicates. In our setting, this duplica-
tion also arises when multiple crash states trigger the same
bug. To address this problem, we extended Syzkaller to auto-
matically triage bug reports generated by Chipmunk during
fuzzing. We use a simple triaging procedure that clusters
bug reports by lexical similarity. We also updated Syzkaller
to display these bug report clusters in its UI dashboard to
make them easier for users to debug.

3.5 Implementation
Although Chipmunk was originally based on CrashMonkey,
the two systems diverged early in development and most of
Chipmunk’s core code is new. Chipmunk has twice as much
code dedicated to constructing and checking crash states as
CrashMonkey. The increase in test harness size primarily
comes from the complexity of PM write semantics when
constructing crash states, the need to associate each logged
write operation with the system call that issued it, and a
much more complex set of consistency checks that account
for the semantics of each tested system call in different file
systems. We also wrote new code to track oracle state for the
consistency checks, as CrashMonkey’s was insufficient for
checks outside of fsync-related calls. Running SplitFS also
required further modification to be made to the test harness,
since it requires its object files to be dynamically linked to
the test harness at runtime. About 2000 LOC in Chipmunk’s

EuroSys ’23, May 8–12, 2023, Rome, Italy LeBlanc et al.

core testing infrastructure comes from a Syzkaller-specific
test harness that executes fuzzer-generated tests. The only
parts of CrashMonkey that remained largely unchangedwere
the code that loads and runs ACE-generated tests and some
functions related to recording the system calls in a workload.

Chipmunk’s core testing infrastructure consists of about
9000 lines of C++ code as reported by sloccount. Five system-
specific logger modules add about 1000 lines of C code each
(several similar systems share modules). We also added about
1000 lines of Go to Syzkaller to handle crash consistency tests
and to collect coverage when remounting crash states.

3.6 Discussion

Limitations. We made certain design decisions to make
testing PM file systems for crash consistency tractable. How-
ever, it is possible that these choices may cause Chipmunk
to miss some bugs or limit its ability to test some file sys-
tems. First, Chipmunk cannot test every workload, and does
not test all possible crash states for each workload. Second,
Chipmunk assumes that the PM file system has centralized
persistence functions. A PM file system that uses in-line
assembly or macros to update PM would not be compati-
ble with Chipmunk. Third, Chipmunk does not currently
support checking concurrent workloads. Testing crash con-
sistency for concurrent workloads is a hard problem [58, 59]
that prior tools do not support. While supporting concurrent
workloads could expose more bugs, it is out of the scope of
this paper and we leave it as future work.
Despite these limitations, we believe that Chipmunk is a

useful addition to the set of tools for building robust PM file
systems. In particular, the level of automation provided by
Chipmunk allows developers to test new or in-development
PM file systems efficiently.
Persistence models. Chipmunk is implemented for x86’s
epoch-based persistence model, which at the time of writ-
ing was available on Intel’s Optane DC Persistent Memory
Module. Since then, Intel has cancelled their Optane project.
However, other hardware vendors have announced similar
byte-addressable persistent storage devices [60], which may
use different persistence models [15, 61–63].
Because Chipmunk logs writes at the function level and

runs checks on real file-system images, its techniques are
not tied to any persistence model. Adding support for a new
model would involve implementing its semantics in Chip-
munk’s replay logic and logger modules, but the rest of the
framework would remain the same. Since the high-level oper-
ations governed by primitives in different persistence models
are broadly similar, these changes should be straightforward.
We expect that file systems for new models will use central-
ized persistence functions as the preferred abstraction for
writing data to durable storage for portability and simplicity.

Furthermore, our bug analysis shows that many bugs are
caused by logic errors rather than PM programming errors.

Logic bugs will continue to occur across persistence models
and we expect Chipmunkwould be a valuable tool for testing
file systems built for a variety of persistence models.
Code coverage. Although Chipmunk is not intended to be
complete and achieving high code coverage metrics was not
a goal of this work, our results indicate that using ACE and
Syzkaller to generate workloads enables thorough testing
of important file system features. Our workload generation
strategy, which focuses on testing common file system opera-
tions, was effective at exposing many new crash-consistency
bugs in the tested systems. For long running tests, Chipmunk
could be paired with tools like OSS-Fuzz [64] to focus on
high code coverage.

4 Testing PM File Systems
In this section, we evaluate Chipmunk’s effectiveness at
finding bugs across different PM file systems.

4.1 Methodology

File systems. We ran Chipmunk with seven open-source
PM file systems: NOVA [17], NOVA-Fortis [31], PMFS [18],
WineFS [20], SplitFS [19], and ext4-DAX and XFS-DAX [53].
NOVA, NOVA-Fortis, PMFS, WineFS, and SplitFS in strict
mode have strong crash-consistency guarantees, so Chip-
munk inserts crash points both during and after system calls
when testing these systems. ext4-DAX and XFS-DAX have
weak guarantees, so Chipmunk only inserts crash points af-
ter fsync-related system calls when testing them. Chipmunk
is compatible with Strata and Assise as well, but we learned
after communication with authors that neither system’s cur-
rent artifact supports recovery from arbitrary crashes, so we
were unable to proceed with evaluation on these systems.
System calls. We select a set of system calls to test based
on what is supported by each file system and what crash
consistency guarantees they provide. We focused on ten key
operations: creat, mkdir, fallocate, write, link, unlink,
remove, rename, truncate, and rmdir. Tests run on ext4-
DAX andXFS-DAX also include setxattr and removexattr,
which are not supported by the other systems we tested.
All tests also include open and close as necessary, and
tests on ext4-DAX and XFS-DAX use at least one of fsync,
fdatasync, or sync to ensure that data becomes persistent.
We did not test mmap with Chipmunk, as modifications to
memory-mapped regions are not handled via centralized
persistence functions and a number of other tools have been
built to target the crash-consistency of memory-mapped data
(§6.3).

4.2 Experimental setup

Test infrastructure.All experiments described in this paper
were run on QEMU/KVM virtual machines running Debian
Stretch. Each VM is allocated one CPU (except for those

Chipmunk: Investigating Crash-Consistency in Persistent-Memory File Systems EuroSys ’23, May 8–12, 2023, Rome, Italy

testing WineFS, which requires four CPUs) and 8 GB of
RAM (except for those testing SplitFS, which requires 32GB).
Each VM also has two 128 MB emulated PM devices, which
are used to execute the workload, construct the oracle file
system, and check crash states.
We run ACE-generated workloads on a single Amazon

EC2 m5d.metal instance with 96 vCPUs, 384 GB memory,
and four 900 GB NVMe SSDs. We use these resources to
check multiple file systems using workloads of multiple se-
quence lengths in parallel. For the systems with strong crash
consistency, we ran seq-1 and seq-2 tests on individual VMs,
as the number of tests to run was relatively small. We split
seq-3 metadata workloads across 10 VMs and ran them in
parallel. At the time we ran these experiments, WineFS and
SplitFS both had bugs that prevented many seq-3 tests from
running. The number of in-flight writes at any time during
ACE tests is consistently low, so we do not place a cap on the
number of crash states for ACE. For ext4-DAX and XFS-DAX,
we ran seq-1 tests on an individual VM and split seq-2 tests
across 20 VMs. We were unable to run seq-3 metadata tests
on these systems due to time constraints.

To evaluate Chipmunkwith Syzkaller, we ran sevenChame-
leon Cloud [65] bare metal instances, which have two Intel
Xeon Gold 6240R CPUs each with 24 cores and 48 threads, as
well as 192 GB RAM, and 480 GB storage. Each host fuzzed a
different file system using 15 virtual machines. Each fuzzer
starts with an empty set of seeds. Syzkaller-generated tests
can be long and generate many crash states, so to avoid the
fuzzer getting stuck, we run Chipmunk with a cap of two
writes per crash state; as §5.1.2 observes, this cap does not
affect its ability to find bugs in practice.

4.3 Evaluation

ACE tests. For each file system under test, Chipmunk took
less than 1 hour to run seq-1 workloads on a single VM. Run-
ning these tests on NOVA/NOVA-Fortis, PMFS, and WineFS
takes less than 15 minutes. Seq-2 tests take 7-20 hours on
the PM file systems with strong consistency. It takes about
30 hours for all seq-2 tests to finish running on ext4-DAX
and XFS-DAX when using 20 VMs in parallel. For systems
tested on seq-3 workloads, it took 16-26 hours to run them
in parallel on 10 VMs. The number of crash states to check
on each workload varies as much as 3× between file systems,
with PMFS generally checking the most and WineFS check-
ing the fewest. Overall, Chipmunk found 19 bugs using ACE
tests across five of the tested systems.
Syzkaller. We ran Chipmunk with Syzkaller for 18 hours
on 15 VMs, for a total of 270 CPU hours spent fuzzing each
system. During this time, Chipmunk checked over 40 million
crash states across all tested systems, finding 23 unique bugs.
Four of these bugs cannot be found with ACE-generated
workloads.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1

10

100

1,000

10,000

100,000

1,000,000

1

of bugs found

Ti
m
e
Ta

ke
n
(s
)

Syzkaller
ACE

Figure 3. Cumulative time taken to find crash-consistency
bugs by ACE and Syzkaller.

Comparison.We ran Syzkaller and ACE on each file system
and recorded the cumulative CPU time taken to find all bugs
when using each workload generator. Figure 3 shows the
result of this experiment. ACE finds the first 19 out of 23 bugs
in less than three CPU hours total, but is unable to find the
final four bugs. Aside from a couple bugs that Syzkaller and
ACE workloads both trigger almost immediately, Syzkaller
takes almost 20× more CPU time than ACE to find the first
12 bugs and almost 6× more CPU time to find all bugs ex-
posed by ACE. However, when we let Syzkaller run for an
additional 47 CPU hours, it is able to find four bugs that
are not detected by ACE. ACE misses these bugs because
they do not conform to the patterns that it uses to generate
workloads. For example, two of these bugs create two open
file descriptors to the same file and modify the file’s contents
through both file descriptors. ACE workloads do not open
multiple file descriptors for the same file and thus cannot
trigger these bugs.

While the results of this experiment indicate that Syzkaller
has greater overall bug finding capability than ACE, the ACE
tests are considerably more resource efficient. This suggests
that the ACE tests can be run locally to find bugs during file-
system development, whereas Syzkaller should be run for a
long time in an environment with ample compute resources
for more comprehensive crash-consistency testing.

4.4 Results

Crash-consistency bugs. Using ACE and Syzkaller gener-
ated tests, Chipmunk finds 23 new unique crash-consistency
bugs across the tested file systems. The number of bugs is
based on the number of unique fixes required to patch all of
the bugs, not different user-visible consequences. Two bugs
are found in both WineFS and PMFS for a total of 25 bugs.
Table 1 describes the consequences of each bug and the

system calls they affect. The bugs are classified as either

EuroSys ’23, May 8–12, 2023, Rome, Italy LeBlanc et al.

Bug # File System Consequence Affected system calls Type

1 NOVA File system unmountable All Logic
2 NOVA File is unreadable and undeletable mkdir, creat PM
3 NOVA File system unmountable write, pwrite, link, unlink, rename Logic
4 NOVA Rename atomicity broken (file disappears) rename Logic
5 NOVA Rename atomicity broken (old file still present) rename Logic
6 NOVA Link count incremented before new file appears link Logic
7 NOVA File data lost truncate Logic
8 NOVA File data lost fallocate Logic
9 NOVA-Fortis Unreadable directory or file data loss unlink, rmdir, truncate PM
10 NOVA-Fortis File is undeletable write, pwrite, link, rename Logic
11 NOVA-Fortis FS attempts to deallocate free blocks truncate Logic
12 NOVA-Fortis File is unreadable truncate Logic
13 PMFS File system unmountable truncate, unlink, rmdir, rename Logic
14 & 15 PMFS, WineFS Write is not synchronous write, pwrite PM
16 PMFS Out-of-bounds memory access All Logic
17 & 18 PMFS, WineFS File data lost write, pwrite PM
19 WineFS File is unreadable and undeletable All Logic
20 WineFS Data write is not atomic in strict mode write, pwrite Logic
21 SplitFS Operation is not synchronous All metadata Logic
22 SplitFS File data lost write, pwrite Logic
23 SplitFS File data lost write, pwrite Logic
24 SplitFS Operation is not synchronous All Logic
25 SplitFS Rename atomicity broken (old file still present) rename Logic

Table 1. Bugs found by Chipmunk, their consequences, and the system calls that they affect.

logic or PM errors (§5.1). Chipmunk found eight bugs in
NOVA, five bugs in SplitFS, four bugs in NOVA-Fortis, two
bugs in PMFS, two bugs in WineFS, and two bugs in both
PMFS and WineFS. Many of these bugs have serious conse-
quences: three prevent the file system from being mounted
entirely, and three impact the atomicity of rename, which
many applications rely on [45]. Many others cause data loss
or prevent a user from accessing files entirely.

Bugs 4, 5, and 13 in Table 1 were found independently by
both Vinter [54] and Chipmunk. Vinter’s authors also re-
ported a bug related to an optimization in the non-temporal
store function used by NOVA and NOVA-Fortis, which Chip-
munk can reproduce. Chipmunk found a related bug impact-
ing PMFS and WineFS (17 and 20).

Chipmunk did not find any bugs in ext4-DAX or XFS-DAX.
We attribute this to thematurity of the base file systems.Most
code in ext4-DAX and XFS-DAX is shared with their non-
DAX versions, which are very well tested. CrashMonkey
also found no new bugs in either system, and Hydra found
only one new crash-consistency bug in ext4.
Non-crash-consistency bugs.While working with Chip-
munk, we also found eight non-crash-consistency bugs not
included in Table 1. We were able to find these bugs because
they caused KASAN errors, segmentation faults, or incorrect
behavior that our consistency checks could detect. For ex-
ample, using the fuzzer, we discovered that NOVA does not
properly handle write calls where the number of bytes to

write is extremely large; it will allocate all remaining space
for the file, causing most subsequent operations to fail.

5 Bug Analysis
This section presents an analysis of the 23 crash-consistency
bugs found by Chipmunk (Table 1). To the best of our knowl-
edge, this is the largest corpus of crash-consistency bugs in
PM file systems.

5.1 Observations
We first present observations about the nature of the crash-
consistency bugs found by Chipmunk, and then present
observations about crash-consistency testing.

5.1.1 Nature of crash-consistency bugs.

Observation 1: Most of the observed bugs are logic is-
sues rather than PM programming errors. Prior work
on crash-testing PM applications focuses on bugs related
to subtleties in the PM programming model, like CPU store
reordering. However, the majority of bugs we found—19 of
23—are actually due to higher-level logic bugs rather than
mistakes in managing PM. The “type” column in Table 1 clas-
sifies bugs into logic bugs or PM bugs. Logic bugs are issues
that cannot be fixed by adding cache line flushes or store
fences. These results suggest that it is not sufficient for a file-
system crash-consistency testing tool to focus on exploring
the persistence behavior of individual writes and reorderings;

Chipmunk: Investigating Crash-Consistency in Persistent-Memory File Systems EuroSys ’23, May 8–12, 2023, Rome, Italy

Observation Associated bugs

Many bugs are logic/design issues, not PM programming errors. 1, 3–8, 10–13, 16, 19, 20, 21–25
The complexity of performing in-place updates leads to bugs. 4–7, 14, 15
Recovery related to rebuilding in-DRAM state is a significant source of bugs. 1, 3, 7, 11, 13, 16, 19, 24, 25
Complex features for increasing resilience can introduce crash consistency bugs. 2, 9–12
Many can only be exposed by simulating crashes during system calls. 3–6, 9–13, 19, 20
Short workloads were sufficient to expose many crash consistency bugs. 1–6, 9–20, 21–25
Many bugs are exposed by replaying a few small writes onto previously persistent state. 3–6, 9–13, 19, 20

Table 2. Observations and the bugs associated with them.

it must also check higher-level consistency properties that
cannot be validated at the level of individual writes. We note
that all bugs in found in SplitFS are logic bugs. Our results
suggest that SplitFS’s use of ext4-DAX to handle metadata
operations reduces risk of PM programming errors, but does
not eliminate logical bugs that impact crash consistency. All
of the bugs Chipmunk found in SplitFS are related to its
optimized logging approach, which SplitFS uses to provide
stronger crash-consistency guarantees than ext4-DAX.

Observation 2: In-place update optimizations are a com-
mon source of crash consistency bugs. One of the allures
of PM is that programs can access it as memory, performing
fine-grained reads and writes directly rather than coalesc-
ing them into larger block-sized I/O operations. This design
makes it possible in principle to reduce the overheads of
traditional consistency mechanisms like journaling by ma-
nipulating on-disk data structures directly. Most of the sys-
tems we tested use a journal for crash consistency, but have
performance optimizations to bypass the journal in certain
circumstances. For example, NOVA updates the link count
of a file by updating a per-inode log. Appending to this log is
usually done via a journalled transaction, but if the previous
operation on the file also updated its link count, NOVA may
modify that log entry in place.
We found these optimizations to be particularly error-

prone: six of 23 bugs in Table 1 are caused by in-place up-
dates. For example, in bug 4, NOVA’s rename implementation
removes the directory entry from the parent inode in-place
but journals the other metadata changes, allowing the file to
be lost in a crash before the journal transaction commits.

Fixing these bugs often requires journalling more data. To
quantify the impact of fixing such bugs, we compared the
performance of NOVA before and after fixing two rename
atomicity bugs (4 and 5). We tested both versions on Intel
Optane DC Persistent Memory media. In a microbenchmark
that repeatedly overwrites a file using rename, the fixed
version is 25% slower. A more real-world metadata-intensive
benchmark (checking out different stable versions in the
Linux kernel git repository) shows negligible overhead (<1%).

In some cases, journalling can even be better than in-place
updates. The fix for bug 6 replaces an in-place update in
link with extra logging, but makes a microbenchmark that
repeatedly creates links to a file 7% faster, likely because
checking whether the in-place update is safe requires an
extra read from the media.

Observation 3: Rebuilding volatile state during crash
recovery is error-prone. In a traditional file system, crash
recovery scans on-disk structures like journals and updates
the durable state to match. In contrast, PM file systems often
keep metadata like free page lists in DRAM as a performance
andwrite endurance optimization and rebuild them at mount.
This rebuilding code is subtle because it must account for
potential inconsistencies or partial states after a crash, and
we found that nine of the 23 bugs in Table 1 were in such
code. For example, bug 13 can be caused by a crash during a
truncate system call on PMFS. This operation first stores
information about the truncation in a “truncate list”; if the
system crashes before the truncation is complete, the trun-
cate list can be replayed to finish the operation. However,
replaying truncations requires accessing the free page list,
which is kept in DRAM and thus lost in the crash. Attempts
to replay truncations therefore cause a null pointer derefer-
ence.
Rebuilding volatile state is more complex in PM file sys-

tems that maintain per-CPU volatile state to improve scal-
ability. For example, in bug 19, WineFS failed to properly
index into an array of per-CPU journals that were read dur-
ing crash recovery, preventing journaled updates from being
accessed after a crash.

Observation 4: Resilience mechanisms to recover from
media failures can introduce new crash-consistency
bugs. NOVA-Fortis [31] is an extension of NOVA that adds
fault detection and tolerance for media errors and software
bugs by (among other techniques) replicating and/or check-
summing inodes, logs, and file data. While NOVA-Fortis is
not explicitly designed to increase crash resilience, we tested
it to determine if it is more tolerant of crashes than NOVA.

EuroSys ’23, May 8–12, 2023, Rome, Italy LeBlanc et al.

NOVA-Fortis has all the same crash-consistency bugs we
found in the original version of NOVA, and in addition has
four new bugs caused by the added complexity of maintain-
ing redundant state and checksums. A common theme in
these bugs is that data and metadata modifications are of-
ten not atomic with checksum and replica updates, allowing
checksum validation to fail (and render a file inaccessible)
even if the file system is consistent and data intact.

5.1.2 Crash-consistency testing in PM file systems.
Observation 5: Many observed bugs require simulating
crashes during system calls. Current crash-consistency
testing tools for traditional file systems, like CrashMon-
key [28] and Hydra [29], insert crashes only after fsync-
related system calls. This heuristic exploits the fact that most
POSIX APIs only make crash-consistency guarantees after
persistence operations, so intermediate states are unlikely
to violate the specification. It allows these tools to scale to
test larger workloads, and does not appear to cause them
to miss bugs: CrashMonkey has a mode to insert crashes
during system calls, but it did not find any additional bugs.
We found that this same heuristic does not work for PM

file systems. 11 of the 23 bugs in Table 1 require a crash to
occur during a system call. This is a corollary of our obser-
vation that most PM file systems implement most system
calls synchronously, making their effects persistent by the
end of the system call. For example, the rename atomicity
bugs in NOVA (bugs 4 and 5) arise when a crash during the
system call leaves only some writes persisted. Waiting until
the system call completes would hide these bugs, as NOVA
flushes all writes by the end of the operation.

Observation 6: Short workloads suffice to expose many
crash-consistency bugs. We use ACE [28] to exhaustively
generate small test workloads. ACE’s design is based on
an empirical study of historical crash consistency bugs in
traditional file systems that showed that most bugs could be
reproduced with at most three core operations. It was unclear
whether this would hold for PM file systems. However, 19 of
the 23 bugs we found in PM file systems can be found using
ACE, suggesting that this same small-scope hypothesis [66]
holds for PM file systems. We also run Chipmunk using the
Syzkaller gray-box fuzzer, which can generate much longer
workloads but without the exhaustiveness guarantees of ACE
(§3.4). Syzkaller found four bugs that ACE did not. However,
all four bugs were found on short workloads: three would
be considered seq-2 and one seq-3. ACE missed them not
because of size but because of complexities that ACE omits
to make exhaustive enumeration tractable, such as testing
non-8-byte-aligned writes.

Observation 7: Most of the observed buggy crash states
involve few writes to PM. Chipmunk generates crash
states by snapshotting known-persistent disk states between
store fences, and then replaying all subsets of the in-flight

writes between each store fence (§3). For a system call with 𝑛
in-flight writes before a fence, this means Chipmunk should
consider all 2𝑛 − 1 possible crash states. However, we found
that most bugs found by Chipmunk involve crash states that
include small subsets of the in-flight writes. Of the 11 bugs
in Table 1 that involve a crash in the middle of a system
call, 10 can be exposed by a crash state that replays only a
single write onto the last known-persistent state; the final
bug requires two writes. This observation suggests a prof-
itable heuristic would be to only test small subsets of in-flight
writes. Chipmunk exploits this observation by enumerating
crash states in increasing order of subset size, allowing it
to find most crash-consistency bugs quickly. In our experi-
ments, we often cap the number of writes that are replayed
to build each crash state, primarily to prevent Syzkaller from
spending many hours checking a single outlier test with a
high in-flight write count. The highest in-flight write count
we observed, 20 writes in some PMFS write calls, would
take about 30 hours to check exhaustively using Chipmunk.
A cap of two is enough to find all bugs presented in this
paper; a cap of five is sufficient to check all crash states for
most system calls in the PM file systems we tested.

5.2 Lessons Learned
Based on our observations above, we have distilled three
lessons for developers of PM file systems and for building
the testing tools that support them.

Lesson 1: Synchronous crash consistency on PM file
systems simplifies the user experience, but compli-
cates implementation and testing. Crash-consistency
guarantees in modern file systems are something of a vi-
cious cycle. File-system developers argue that relaxed guar-
antees are required to extract reasonable performance [67],
but these weak guarantees are a pain point for application
developers and have caused severe data loss in popular ap-
plications [45, 68, 69], so file-system developers implement
workarounds to “fix” common mistaken application patterns
and make the intended guarantees even less clear. The fine
write granularity and low latency of PM finally offers a path
to strengthen file-system crash-consistency models, making
resilient applications easier to build and validate. PM file
system developers have taken advantage of this opportunity
by making all system calls synchronous and durable.
While this end result is exciting, implementing it cor-

rectly carries new risks for PM file-system developers com-
pared to traditional file systems. We found that many PM
file-system bugs come from complex optimizations to re-
alize high-performance synchronous crash-consistency —
combining in-place updates with other consistency mecha-
nisms, replacing persistent state with reconstructible volatile
state, or introducing new logging protocols — that are un-
common techniques on slower storage media. This is a rich
new design space for storage systems, and identifying the

Chipmunk: Investigating Crash-Consistency in Persistent-Memory File Systems EuroSys ’23, May 8–12, 2023, Rome, Italy

right primitives for these optimizations will be good future
work. These optimizations also create complexity for testing
and validation of PM file systems, which we found requires
driving the file system into exercising deeper data struc-
ture manipulations and recovery mechanisms than existing
crash-consistency tools are capable of.

Lesson 2: Diverse testing mechanisms and checkers
help invalidate assumptions about crash-consistency
patterns. Most crash-consistency testing tools build on
heuristics and patterns in historic bugs to select the work-
loads they test. We expected to bring those patterns across
to PM file systems, focusing on short workloads and a small
set of potential crash points. However, we found instead that
most assumptions about file-system crash consistency do not
carry across to PM, where the consistency mechanisms and
guarantees are significantly different. Finding crash consis-
tency bugs in PM file systems requires exploring many more
crash states than other file systems, including crashes in the
middle of system calls; we had to develop new techniques to
make this search tractable. We also found that fuzzing was
an effective way to invalidate assumptions from prior file
systems experience, such as the significance of unaligned
writes and exercising per-CPU code paths.

Another assumption we carried into this work was that
the difficulty of building a PM file system lies in correctly ap-
plying the PM programming model. We intended to focus on
exhaustively testing the precise persistency behavior of PM
file system code. However, we found instead that most PM
file system bugs were logic errors. Existing tools that focus
on detecting specific PM programming error patterns [33–
40] would miss many of these bugs. Writing general-purpose
consistency checks and applying gray-box fuzzing to gener-
ate workloads helped to invalidate these assumptions.

Lesson 3: Lightweight testing offers a scalable approach
to detecting many crash-consistency bugs. Chipmunk
is, in principle, a bounded exhaustive testing [28] tool for
PM file systems: given enough time, it can check every pos-
sible crash behavior of every possible workload up to some
bounds on its size and inputs. Of course, it is not tractable
to exhaust this search space even with very small bounds.
However, we found that Chipmunk is an effective light-
weight testing tool, in that it can quickly and automatically
find many bugs by checking small workloads and few crash
states, and then run for longer to find more corner-case is-
sues. Chipmunk runs the ACE seq-1 workloads in less than
15 minutes on most tested systems. On the other hand, the
fuzzer frontend to Chipmunk takes 1–2 orders of magnitude
longer to run but finds four more bugs than ACE. These two
frontends are complementary. They enable a lightweight
approach that helps developers iterate quickly on new code,
while offering stronger confidence as the code gets “closer
to production” [70].

6 Related work
This section discusses related work on crash consistency
testing for PM and file systems.

6.1 Testing traditional file systems
CrashMonkey [28] is a black-box record-and-replay frame-
work that uses systematically-generated test cases to find
bugs in file systems for traditional storage media. Hydra
[29] is a file-system fuzzer that focuses on crash consistency
bugs and POSIX violations. Both CrashMonkey and Hydra
rely on the kernel block layer to record write operations
and are incompatible with PM file systems. Several model
checking approaches [30, 71] require modifications to the
kernel and file system. Further, all of these tools only check
crash states immediately after fsync-related system calls,
which is insufficient for finding bugs in the complex and
untested crash-consistency mechanisms of PM file systems.

6.2 Testing PM file systems
Yat [41], PMTest [33], and Vinter [54] have all been used to
test PM file systems for crash-consistency bugs. Yat was built
for PMFS and records PM I/O using a custom hypervisor. Yat
has limited optimizations to reduce the space of crash states.
For example, the authors report that a workload of 1200
creat, mkdir, and write calls would take over five years to
complete. PMTest was also only used on PMFS and found
no crash consistency bugs.
Vinter [54] was developed concurrently with Chipmunk

and is similar in many respects. Both tools use a record-
and-replay approach and utilize strong crash-consistency
guarantees to check specific, well-defined properties of crash
states. Chipmunk is compatible with the ACE test generator
and the Syzkaller kernel fuzzer, whereas Vinter was evalu-
ated with 16 handwritten test cases. Vinter’s authors report
nine new bugs with five unique root causes in three file sys-
tems, whereas Chipmunk found 23 unique bugs in five file
systems. Chipmunk can find all but one of the bugs reported
by Vinter; the last bug only impacts file timestamps, which
Chipmunk does not currently check.
To record PM I/O, Vinter instruments individual instruc-

tions using PANDA [55], which introduces significant over-
head. As a result, Chipmunk is faster than Vinter: Vinter
takes 24 minutes to run a suite of 16 tests on NOVA, whereas
Chipmunk runs the ACE seq-1 suite in less than 15 minutes.
To reduce the state space, Vinter focuses on crash states
containing in-flight writes that are likely to be read dur-
ing recovery. Chipmunk could incorporate this heuristic by
recording PM read functions, but Vinter could not use Chip-
munk’s logical write coalescing heuristic because it does not
have information about which function was used to write
each buffer.

EuroSys ’23, May 8–12, 2023, Rome, Italy LeBlanc et al.

6.3 Testing PM applications
Recent research on PM crash consistency has focused on
the difficulty of writing correct code against low-level PM
programming models. These tools target PM programming
mistakes and have limited support for identifying higher-
level logic bugs. Many also require manual annotation of
source code and do not currently support testing kernel code,
severely limiting their applicability to file system testing.

Pmemcheck [35] is a Valgrind-based tool designed to find
PM programming errors in applications built with PMDK [7].
Using Pmemcheck without PMDK requires manual annota-
tion of source code. PMTest [33] and XFDetector [34] also
require developers to manually annotate regions of interest.
PMFuzz [36] is a fuzzer built on AFL++ that uses XFDetector
and Pmemcheck to detect bugs.

Agamotto [38] is a symbolic execution tool built on KLEE
for user-space PM applications. Agamotto does not require
source code annotation, but finding bugs other than low-
level PM programming errors requires developer-provided
oracles. Witcher [39] is designed to test key-value stores
and targets both PM programming errors and “persistence
atomicity violations" by statically inferring which sequences
of writes are intended to be atomic. PmDebugger [37] is a
tool for collecting and analyzing PM access traces without
source code annotation.

7 Conclusion
This paper presents Chipmunk, a new record-and-replay
framework for testing the crash consistency of PM file sys-
tems. We use Chipmunk with the ACE workload generator
and the Syzkaller gray-box fuzzer and find 23 unique bugs
across five PM file systems. To the best of our knowledge,
this is the largest corpus of crash-consistency bugs on PM file
systems. Our study of these bugs provides insights into how
crash-consistency bugs arise in PM file systems and what
types of tools are needed to test these systems. Chipmunk is
publicly available at https://github.com/utsaslab/chipmunk.

Acknowledgements
We thank our shepherd, Sanidhya Kashyap, and the anony-
mous reviewers at EuroSys ’23 and OSDI ’22, and the mem-
bers of the Systems and Storage Lab at UT Austin for their
insightful comments and suggestions. This work was sup-
ported by NSF CAREER #1751277, NSF SHF-CCF-1712067,
the UTAustin-Portugal BigHPC project (POCI-01-0247-FEDER-
045924), and donations from VMware and Amazon Web Ser-
vices.

References
[1] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and

Steven Swanson. An empirical guide to the behavior and use of scalable
persistent memory. In 18th USENIX Conference on File and Storage
Technologies, FAST 2020, Santa Clara, CA, USA, February 24-27, 2020,
pages 169–182, 2020.

[2] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. Basic performance mea-
surements of the intel optane DC persistent memory module. CoRR,
abs/1903.05714, 2019.

[3] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin
Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. Better I/O
through byte-addressable, persistent memory. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP
’09, page 133–146, New York, NY, USA, 2009. Association for Comput-
ing Machinery.

[4] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne:
Lightweight persistent memory. In Proceedings of the Sixteenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, page 91–104, New York, NY,
USA, 2011. Association for Computing Machinery.

[5] Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin
Ipek, Onur Mutlu, and Doug Burger. Phase-change technology and
the future of main memory. IEEE Micro, 30(1):143–143, 2010.

[6] Intel Optane Persistent Memory. https://www.intel.com/content/

www/us/en/architecture-and-technology/optane-dc-persistent-

memory.html.
[7] Intel Corporation. Persistent memory development kit. https://

pmem.io/pmdk/.
[8] Intel Corporation. Redis. https://github.com/pmem/redis.
[9] Lu Zhang and Steven Swanson. Pangolin: A fault-tolerant persistent

memory programming library. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 897–912, Renton, WA, July 2019.
USENIX Association.

[10] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. Recipe: Converting concurrent dram indexes to
persistent-memory indexes. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP ’19), Ontario, Canada, October
2019.

[11] Nachshon Cohen, David T. Aksun, and James R. Larus. Object-oriented
recovery for non-volatile memory. Proc. ACM Program. Lang., 2(OOP-
SLA), October 2018.

[12] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Pe-
trank. A persistent lock-free queue for non-volatile memory. In
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’18, page 28–40, New York,
NY, USA, 2018. Association for Computing Machinery.

[13] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. Nv-tree: Reducing consistency cost for
nvm-based single level systems. In 13th USENIX Conference on File
and Storage Technologies (FAST 15), pages 167–181, Santa Clara, CA,
February 2015. USENIX Association.

[14] Mingzhe Zhang, King Tin Lam, Xin Yao, and Cho-Li Wang. Simpo:
A scalable in-memory persistent object framework using nvram for
reliable big data computing. ACM Trans. Archit. Code Optim., 15(1),
March 2018.

[15] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Vo-
los, and Kimberly Keeton. An analysis of persistent memory use with
whisper. In Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’17, page 135–148, New York, NY, USA, 2017. Asso-
ciation for Computing Machinery.

[16] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M.
Swift. Aerie: Flexible file-system interfaces to storage-class memory.
In Proceedings of the Ninth European Conference on Computer Systems,
EuroSys ’14, 2014.

https://github.com/utsaslab/chipmunk
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://github.com/pmem/redis

Chipmunk: Investigating Crash-Consistency in Persistent-Memory File Systems EuroSys ’23, May 8–12, 2023, Rome, Italy

[17] Jian Xu and Steven Swanson. NOVA: A log-structured file system for
hybrid volatile/non-volatile main memories. In 14th USENIX Confer-
ence on File and Storage Technologies (FAST 16), pages 323–338, Santa
Clara, CA, February 2016. USENIX Association.

[18] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System
software for persistent memory. In Proceedings of the Ninth European
Conference on Computer Systems, EuroSys ’14, New York, NY, USA,
2014. Association for Computing Machinery.

[19] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, and Vi-
jay Chidambaram. SplitFS: Reducing software overhead in file systems
for persistent memory. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP ’19), Ontario, Canada, October
2019.

[20] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponnapalli, Harshad
Shirwadkar, Gregory R. Ganger, Aasheesh Kolli, and Vijay Chi-
dambaram. WineFS: A hugepage-aware file system for persistent
memory that ages gracefully. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21, page 804–818,
New York, NY, USA, 2021. Association for Computing Machinery.

[21] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. Strata: A cross media file system.
In Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, page 460–477, New York, NY, USA, 2017. Association for
Computing Machinery.

[22] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen.
Performance and protection in the ZoFS user-space NVM file sys-
tem. Proceedings of the 27th ACM Symposium on Operating Systems
Principles, 2019.

[23] Thomas E. Anderson, Marco Canini, Jongyul Kim, Dejan Kostić,
Youngjin Kwon, Simon Peter, Waleed Reda, Henry N. Schuh, and
Emmett Witchel. Assise: Performance and availability via client-local
NVM in a distributed file system. In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 20), pages 1011–1027.
USENIX Association, November 2020.

[24] Gregory R. Ganger and Yale N. Patt. Metadata update performance
in file systems. In Proceedings of the 1st Symposium on Operating
Systems Design and Implementation (OSDI ’94), pages 49–60, Monterey,
California, November 1994.

[25] Vijay Chidambaram. Orderless and Eventually Durable File Systems.
PhD thesis, University of Wisconsin, Madison, Aug 2015.

[26] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Crash consistency. Commun. ACM,
58(10):46–51, 2015.

[27] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy,
Emina Torlak, and XiWang. Specifying and checking file system crash-
consistency models. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS, pages 83–98, Atlanta, GA, USA, April
2016.

[28] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju,
and Vijay Chidambaram. CrashMonkey and ACE: Systematically
testing file-system crash consistency. ACM Trans. Storage, 15(2), apr
2019.

[29] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu,
and Taesoo Kim. Finding semantic bugs in file systems with an exten-
sible fuzzing framework. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, page 147–161, New York,
NY, USA, 2019. Association for Computing Machinery.

[30] Junfeng Yang, Can Sar, and Dawson Engler. Explode: A lightweight,
general system for finding serious storage system errors. In Proceedings
of the 7th Symposium on Operating Systems Design and Implementation,
OSDI ’06, page 131–146, USA, 2006. USENIX Association.

[31] Jian Xu, Lu Zhang, AmirsamanMemaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, andAndy Rudoff.
NOVA-Fortis: A fault-tolerant non-volatile main memory file system.
In Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, page 478–496, New York, NY, USA, 2017. Association for
Computing Machinery.

[32] Syzkaller. https://github.com/google/syzkaller/, 2021.
[33] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira

Khan. PMTest: A fast and flexible testing framework for persistent
memory programs. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, page 411–425, New York, NY, USA,
2019. Association for Computing Machinery.

[34] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch,
Aasheesh Kolli, and Samira Khan. Cross-failure bug detection in persis-
tent memory programs. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’20, page 1187–1202, New York, NY, USA,
2020. Association for Computing Machinery.

[35] Discover Persistent Memory Programming Errors with Pmemcheck.
https://www.intel.com/content/www/us/en/developer/articles/

technical/discover-persistent-memory-programming-errors-with-

pmemcheck.html, 2018.
[36] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. Pmfuzz:

Test case generation for persistent memory programs. In Proceedings
of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2021,
page 487–502, New York, NY, USA, 2021. Association for Computing
Machinery.

[37] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. Fast, flexible, and compre-
hensive bug detection for persistent memory programs. In Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2021, page
503–516, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[38] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, Si-
mon Peter, and Baris Kasikci. AGAMOTTO: How persistent is your
persistent memory application? In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 20), pages 1047–1064.
USENIX Association, November 2020.

[39] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad
Ismail, Sunny Wadkar, Dongyoon Lee, and Changwoo Min. Witcher:
Systematic crash consistency testing for non-volatile memory key-
value stores. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 100–115, New York, NY,
USA, 2021. Association for Computing Machinery.

[40] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. Jaaru: Effi-
ciently model checking persistent memory programs. In Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2021, page
415–428, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[41] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran,
and Jeff Jackson. Yat: A validation framework for persistent memory
software. In 2014 USENIX Annual Technical Conference (USENIX ATC
14), pages 433–438, Philadelphia, PA, June 2014. USENIX Association.

[42] Kernel Probes (Kprobes). https://www.kernel.org/doc/

Documentation/kprobes.txt.
[43] Uprobe-tracer: Uprobe-based event tracing. https://www.kernel.org/

doc/html/latest/trace/uprobetracer.html.
[44] The Open Group Base Specifications Issue 7. https:

//pubs.opengroup.org/onlinepubs/9699919799/, 2018.
[45] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-

natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,

https://github.com/google/syzkaller/
https://www.intel.com/content/www/us/en/developer/articles/technical/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://www.intel.com/content/www/us/en/developer/articles/technical/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://www.intel.com/content/www/us/en/developer/articles/technical/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://www.kernel.org/doc/Documentation/kprobes.txt
https://www.kernel.org/doc/Documentation/kprobes.txt
https://www.kernel.org/doc/html/latest/trace/uprobetracer.html
https://www.kernel.org/doc/html/latest/trace/uprobetracer.html
https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/

EuroSys ’23, May 8–12, 2023, Rome, Italy LeBlanc et al.

and Remzi H. Arpaci-Dusseau. All File Systems Are Not Created
Equal: On the Complexity of Crafting Crash-Consistent Applications.
In Proceedings of the 11th Symposium on Operating Systems Design and
Implementation (OSDI ’14), Broomfield, CO, October 2014.

[46] R. McMillan. Amazon Blames Generators For Blackout That
Crushed Netflix. http://www.wired.com/wiredenterprise/2012/07/

amazonexplains/, 2012.
[47] R. Miller. Data Center Outage Cited In Visa Downtime Across

Canada. http://www.datacenterknowledge.com/archives/2013/01/28/

data-center-outage-cited-in-visa-downtime-across-canada/, 2013.
[48] R. Miller. Power Outage Knocks Dreamhost Customers Of-

fline. http://www.datacenterknowledge.com/archives/2013/03/20/

power-outage-knocks-dreamhost-customers-offline/, 2013.
[49] R. S. V Wolffradt. Fire In Your Data Center: No Power, No Access, Now

What? http://www.govtech.com/state/Fire-in-your-Data-Center-No-

Power-No-Access-Now-What.html, 2014.
[50] J. Verge. Internap Data Center Outage Takes Down Livestream

And Stackexchange. http://www.datacenterknowledge.com/

archives/2014/05/16/internap-data-center-outage-takes-livestream-

stackexchange/, 2014.
[51] R. Miller. Power Outage Hits London Data Center. http:

//www.datacenterknowledge.com/archives/2012/07/10/power-

outage-hits-london-data-center/, 2012.
[52] Intel Optane DC Persistent Memory Quick Start Guide. https:

//www.intel.com/content/dam/support/us/en/documents/memory-

and-storage/data-center-persistent-mem/Intel-Optane-DC-

Persistent-Memory-Quick-Start-Guide.pdf.
[53] Direct Access for files. https://www.kernel.org/doc/Documentation/

filesystems/dax.txt.
[54] Samuel Kalbfleisch, Lukas Werling, and Frank Bellosa. Vinter: Auto-

matic Non-Volatile memory crash consistency testing for full systems.
In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages
933–950, Carlsbad, CA, July 2022. USENIX Association.

[55] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and
Ryan Whelan. Repeatable reverse engineering with panda. In Proceed-
ings of the 5th Program Protection and Reverse Engineering Workshop,
PPREW-5, New York, NY, USA, 2015. Association for Computing Ma-
chinery.

[56] Brian Chin, Shane Markstrum, and Todd Millstein. Semantic type
qualifiers. In Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’05, page 85–95,
New York, NY, USA, 2005. Association for Computing Machinery.

[57] Program instrumentation options. https://gcc.gnu.org/onlinedocs/gcc/
Instrumentation-Options.html.

[58] Madan Musuvathi, Shaz Qadeer, and Thomas Ball. Chess: A systematic
testing tool for concurrent software. Technical Report MSR-TR-2007-
149, November 2007.

[59] Pedro Fonseca, Rodrigo Rodrigues, and Björn B. Brandenburg. SKI:
Exposing kernel concurrency bugs through systematic schedule explo-
ration. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 415–431, Broomfield, CO, October
2014. USENIX Association.

[60] Samsung electronics introduces industry’s first 512gb CXL mem-
ory module. https://news.samsung.com/global/samsung-electronics-

introduces-industrys-first-512gb-cxl-memory-module, 2022.
[61] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory per-

sistency. In Proceeding of the 41st Annual International Symposium on
Computer Architecuture, ISCA ’14, page 265–276. IEEE Press, 2014.

[62] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. Basic performance mea-
surements of the Intel Optane DC Persistent Memory Module. CoRR,
abs/1903.05714, 2019.

[63] Vaibhav Gogte, William Wang, Stephan Diestelhorst, Peter M. Chen,
Satish Narayanasamy, and Thomas F. Wenisch. Relaxed persist or-
dering using strand persistency. In 2020 ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 652–665,
2020.

[64] OSS-Fuzz. https://github.com/google/oss-fuzz.
[65] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth,

Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody
Hammock, Joe Mambretti, Alexander Barnes, François Halbach, Alex
Rocha, and Joe Stubbs. Lessons learned from the chameleon testbed. In
Proceedings of the 2020 USENIX Annual Technical Conference (USENIX
ATC ’20). USENIX Association, July 2020.

[66] Daniel Jackson and Craig A. Damon. Elements of style: Analyzing a
software design feature with a counterexample detector. IEEE Trans.
Softw. Eng., 22(7):484–495, July 1996.

[67] Bug 15910 - zero-length files and performance degradation, 2010. https:
//bugzilla.kernel.org/show_bug.cgi?id=15910.

[68] Jonathan Corbet. ext4 and data loss, March 2009. http://lwn.net/

Articles/322823/.
[69] Nicolas Boichat. Issue 502898: ext4: Filesystem corruption on panic,

June 2015. https://code.google.com/p/chromium/issues/detail?id=

502898.
[70] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully,

Bernhard Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slat-
ton, Serdar Tasiran, Jacob Van Geffen, and Andrew Warfield. Using
lightweight formal methods to validate a key-value storage node in
Amazon S3. In ACM SIGOPS 28th Symposium on Operating Systems
Principles (SOSP), pages 836–850, October 2021.

[71] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi.
Using model checking to find serious file system errors. In Proceedings
of the 6th Symposium on Operating Systems Design and Implementation,
OSDI ’04, page 273–287, USA, 2004. USENIX Association.

http://www.wired.com/wiredenterprise/2012/07/amazon explains/
http://www.wired.com/wiredenterprise/2012/07/amazon explains/
http://www.datacenterknowledge.com/archives/2013/01/28/data-center-outage-cited- in-visa-downtime-across-canada/
http://www.datacenterknowledge.com/archives/2013/01/28/data-center-outage-cited- in-visa-downtime-across-canada/
http://www.datacenterknowledge.com/archives/2013/03/20/power-outage- knocks-dreamhost-customers-offline/
http://www.datacenterknowledge.com/archives/2013/03/20/power-outage- knocks-dreamhost-customers-offline/
http://www.govtech.com/state/Fire-in-your-Data-Center-No-Power-No-Access-Now-What.html
http://www.govtech.com/state/Fire-in-your-Data-Center-No-Power-No-Access-Now-What.html
http://www.datacenterknowledge.com/archives/2014/05/16/internap- data-center-outage- takes-livestream- stackexchange/
http://www.datacenterknowledge.com/archives/2014/05/16/internap- data-center-outage- takes-livestream- stackexchange/
http://www.datacenterknowledge.com/archives/2014/05/16/internap- data-center-outage- takes-livestream- stackexchange/
http://www.datacenterknowledge.com/archives/2012/07/10/power-outage-hits-london-data-center/
http://www.datacenterknowledge.com/archives/2012/07/10/power-outage-hits-london-data-center/
http://www.datacenterknowledge.com/archives/2012/07/10/power-outage-hits-london-data-center/
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://github.com/google/oss-fuzz
https://bugzilla.kernel.org/show_bug.cgi?id=15910
https://bugzilla.kernel.org/show_bug.cgi?id=15910
http://lwn.net/Articles/322823/
http://lwn.net/Articles/322823/
https://code.google.com/p/chromium/issues/detail?id=502898
https://code.google.com/p/chromium/issues/detail?id=502898

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Chipmunk
	3.1 Overview
	3.2 Challenges
	3.3 Chipmunk Architecture
	3.4 Workload Generation
	3.5 Implementation
	3.6 Discussion

	4 Testing PM File Systems
	4.1 Methodology
	4.2 Experimental setup
	4.3 Evaluation
	4.4 Results

	5 Bug Analysis
	5.1 Observations
	5.2 Lessons Learned

	6 Related work
	6.1 Testing traditional file systems
	6.2 Testing PM file systems
	6.3 Testing PM applications

	7 Conclusion
	References

